Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 824, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2244271

RESUMEN

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Asunto(s)
Anticuerpos Neutralizantes , Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Antivirales , Antivirales , Infección Irruptiva , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Med (N Y) ; 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2159549

RESUMEN

BACKGROUND: Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, which displays enhanced antibody escape properties. METHODS: Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta, and Omicron BA.1, BA.2, and BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. FINDINGS: Upon vaccination, serum Nab titers were decreased by 10-, 15-, and 25-fold for BA.1, BA.2, and BA.5, respectively, compared with D614G. We estimated that, after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong immunoglobulin A (IgA) response and a detectable Omicron-neutralizing activity. CONCLUSIONS: BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. FUNDING: Work in O.S.'s laboratory is funded by the Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID), HERA european funding and the NIH PICREID (grant no U01AI151758).

3.
Med (New York, N.Y.) ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2046443

RESUMEN

Background Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, that displays enhanced antibody escape properties. Methods Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta and Omicron BA.1, BA.2, BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. Findings Upon vaccination, serum Nab titers were reduced by 10-, 15- and 25-fold for BA.1, BA.2 and BA.5, respectively, compared with D614G. We estimated that after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong IgA response and a detectable Omicron neutralizing activity. Conclusions Thus, BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. Funding Work in OS lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR. Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID) and the NIH PICREID (grant no U01AI151758). Graphical Planas et al analyze the extent and duration of the neutralizing antibody response following vaccination with Pfizer BNT162b2 mRNA in the sera and nasal swabs from individuals with or without Omicron breakthrough infection, finding a short duration of neutralization against BA.5 after boosting and strong IgA response upon breakthrough infection.

5.
Am J Transplant ; 22(8): 2099-2103, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1685185

RESUMEN

Immunocompromised patients may experience prolonged viral shedding after their initial SARS-CoV-2 infection, however, symptomatic relapses after remission currently remain rare. We herein describe a severe COVID-19 relapse case of a kidney transplant recipient (KTR) following rituximab therapy, 3 months after a moderate COVID-19 infection, despite viral clearance after recovery of the first episode. During the clinical relapse, the diagnosis was established on a broncho-alveolar lavage specimen (BAL) by RT-PCR. The infectivity of the BAL sample was confirmed on a cell culture assay. Whole genome sequencing confirmed the presence of an identical stain (Clade 20A). However, it had an acquired G142D mutation and a larger deletion of 3-amino-acids at position 143-145. These mutations located within the N-terminal domain are suggested to play a role in viral entry. The diagnosis of a COVID-19 relapse should be considered in the setting of unexplained persistent fever and/or respiratory symptoms in KTRs (especially for those after rituximab therapy), even in patients with previous negative naso-pharyngeal SARS-CoV-2 PCR.


Asunto(s)
COVID-19 , Trasplante de Riñón , Prueba de COVID-19 , Humanos , Trasplante de Riñón/efectos adversos , Recurrencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rituximab/uso terapéutico , SARS-CoV-2/genética
6.
Nature ; 602(7898): 671-675, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1616994

RESUMEN

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Evasión Inmune/inmunología , Inmunización Secundaria , SARS-CoV-2/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Bélgica , COVID-19/inmunología , COVID-19/transmisión , ChAdOx1 nCoV-19/administración & dosificación , ChAdOx1 nCoV-19/inmunología , Convalecencia , Femenino , Humanos , Masculino , Mutación , Pruebas de Neutralización , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Viaje
7.
EBioMedicine ; 73: 103637, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1471944

RESUMEN

BACKGROUND: The dynamics of SARS-CoV-2 alpha variant shedding and immune responses at the nasal mucosa remain poorly characterised. METHODS: We measured infectious viral release, antibodies and cytokines in 426 PCR+ nasopharyngeal swabs from individuals harboring non-alpha or alpha variants. FINDINGS: With both lineages, viral titers were variable, ranging from 0 to >106 infectious units. Rapid antigenic diagnostic tests were positive in 94% of samples with infectious virus. 68 % of individuals carried infectious virus within two days after onset of symptoms. This proportion decreased overtime. Viable virus was detected up to 14 days. Samples containing anti-spike IgG or IgA did not generally harbor infectious virus. Ct values were slightly but not significantly lower with alpha. This variant was characterized by a fast decrease of infectivity overtime and a marked release of 13 cytokines (including IFN-b, IP-10 and IL-10). INTERPRETATION: The alpha variant displays modified viral decay and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection. FUNDING: This retrospective study has been funded by Institut Pasteur, ANRS, Vaccine Research Institute, Labex IBEID, ANR/FRM and IDISCOVR, Fondation pour la Recherche Médicale.


Asunto(s)
Citocinas/metabolismo , Nasofaringe/virología , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , Anticuerpos Antivirales/metabolismo , COVID-19/patología , COVID-19/virología , Femenino , Humanos , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
8.
Open Forum Infect Dis ; 8(8): ofab369, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1352260

RESUMEN

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) acquisition after vaccination with BNT162b2 have been described, but the risk of secondary transmission from fully vaccinated individuals remains ill defined. Herein we report a confirmed transmission of SARS-CoV-2 alpha variant (B.1.1.7) from a symptomatic immunocompetent woman 4 weeks after her second dose of BNT162b2, despite antispike seroconversion.

9.
Nature ; 596(7871): 276-280, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1301174

RESUMEN

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Convalecencia , Evasión Inmune/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Francia , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA